黑客24小时在线接单网站

诚信黑客,黑客接单平台,专业黑客在线接单,信誉黑客接单,黑客高手

短期量化在线接单的简单介绍

本文导读目录:

国内量化交易软件排行榜?

随着TPS交易系统体系概念的兴起,很多人会好奇量化交易系统,到底有什么“魔力”。今天就一起来看看,TPS量化交易系统,有哪些新亮点、新玩法。

新亮点

胜率高达92.58%

胜率这个问题,基本是新手第一关心内容,有经验的投资者关心的更多风控和盈亏比。目前,TPS量化交易系统的胜率在92.58%左右。胜率这里我们希望大家别太过于看中,因为交易非定量,不像抛硬币不是正面就是反面,交易存在涨、跌、盘整、还有额外的交易点差手续费。不是高胜率就是好信号,理论上谁都能做出高胜率,甚至100%胜率。只需要下单时盈利一小点的单子平仓,错误的单子严格止盈止损。

盈利率较高

相对于传统人工做法,TPS量化交易系统拥有较高盈利率优势:

1.每个月预期40.28%的盈利率

2.按照10万美金5%的仓位,每月预计盈利5万美金左右。

交易系统稳定

无论是平台还是交易软件,投资者最看重的就是稳定性,一个稳定的交易系统对于投资者来说是很有优势的,很多投资者在刚开始都没有意识到稳定性对他们的重要性,直到在交易中使用了一个不稳定的交易系统,才发现交易过程状况百出,最后,交易结果也和他们的交易表现不成正比。而TPS量化交易系统拥有数据更新及时、可靠的交易数据等优势,不会出现扛单,甚至是大亏大赚的情况,这对于投资者在参与交易时,是非常有利的。

量化网上的量化交易能稳定盈利吗?

量化交易一定赚钱吗?

量化交易可以赚钱,但并不是所有人都能赚钱。影响量化交易盈利的因素有很多,主要有四个。策略模型的适应性,交易员过硬的心态,交易员的认知水平,以及成熟的风控系统。

第一取决于策略模型的适应性。真正优秀且能够稳定盈利的高频策略,目前在市场上很难找到。因为研发成本巨大,基本都被各大基金公司垄断。市场上面能够找到的高频策略,基本上都有设计缺陷,只在一部分行情中有效,或者纯粹就是拿风险换盈利,遇到突发行情直接玩完。这种策略基金和大户都不会用,但市场上一些别有用心的人,利用散户认知不够,经常拿来设计圈套,赚取手续费。至于波段策略,开发起来相对简单,运行下来真正能够长期稳定盈利的也是极少数,愿意分享的人凤毛麟角,大部分优秀的策略一样被私藏。市场中能够找到的波段策略,多数属于适应部分行情的,策略针对的是某一类行情,适应性有限,能否盈利,和盈利多少和行情关系巨大。最后一类是趋势跟踪策略,起源道氏理论,经过多代人的验证,是一种简单有效性的策略。长期跟踪下来能够稳定盈利策略不在少数,但收益率有限,遇到震荡行情盈利会有一定回撤。

第二,取决于交易员的心态。交易员的心态决定能不能把制定的策略运行方案执行到位,是否能扛过策略的正常回撤,在策略持仓出现盈利的情况下会不会提前出局。过硬的心态是投资交易的地基,没有这个基础再好的策略也难以发挥出优势。

第三,取决于交易员的认知,分析水平。成熟的交易员不会迷恋量化策略,知道量化只是一个工具,只是一个支持自动下单的交易软件。会去仔细了解策略的优势和缺点,分析策略适合的行情,找出策略不适合的行情。分析出因为不可控因素出现的正常回撤是多少,分析出行情适合的时候能有多少盈利。最后通盘布局,制定出策略使用的具体方案细节。例如,启动策略的时间,关闭时间,什么情况下手动干预,添加止盈止损,什么情况下提前手动平仓,根据单子的方向等等。

第四,取决于风险控制。每一个策略都有可以承载资金量的限制,也有正常的回撤,这就要求交易员通盘考虑,不能肆意放大交易仓位。量化交易虽然有着各种各样的优势,但并不能降低投资的风险,要考虑突发事件对策略的影响。需要合理分配资金和仓位,设定停止交易的红线,设计参与和退出的机制等。

有哪些好的量化交易平台?

量化交易在国内来说,兴起于2005年左右。但由于投资者水平问题,基础还是比较薄弱,市场还比较小,所以大众化量化交易平台的发展热度不足。大多平台都是机构自己构建的自用平台。

能实盘交易的量化平台只有几个,如聚宽,掘金,文华财经,开拓者,TradeStation等

能提供量化测试的就比较多,镭矿,优矿,京东,RiceQuant米筐,果仁,Bigquant,还有以上可以实盘的这些,等等。

基本采用Python语言为主,也有采用C++,C#,Easy Language 麦语言等。

国内主流的量化平台都有哪些?

掘金量化交易平台V3.0

地址:http://www.myquant.cn/

语言:C++、C#、Python、MATLAB

方式:本机

品种:股票,期货

优矿

地址:https://uqer.io/home/

语言:python

方式:云端

品种:股票,基金,期货

特点:支持外部数据的购买,数据较多,有聚源等提供的,较靠谱

RiceQuant米筐量化交易平台

地址:https://www.ricequant.com/

语言:python,java

方式:云端

品种:股票,基金

特点:口碑较好,据说较人性化

Joinquant聚宽

地址:https://www.joinquant.com/

语言:python

方式:云端

品种:股票,基金

特点:可订阅别人策略和看到别人策略回测图

BotVS量化平台

地址:https://www.botvs.com/

语言:JS

方式:云端

品种:期货,股票,数字货币

特点:支持数字货币,比如比特币

Bigquant人工智能量化

地址:https://bigquant.com/

语言:python

方式:云端

品种:股票

其他:目前网站只有架子,很多栏目是空的,突出了人工智能,但没看到具体策略。

果仁

地址:https://guorn.com/

语言:python

方式:云端

品种:股票,基金,组合。

特点:口碑较好,支持策略跟随

其他的较小众的平台

镭矿

地址:http://www.raquant.com/

京东量化

地址:https://quant.jd.com/

同花顺量化

地址:http://quant.10jqka.com.cn/platform/html/home.html

点宽网

地址:http://www.digquant.com.cn/quant/

诸葛量化

地址:https://www.gpxtrade.com/index.html

数库(人工智能驱动金融创新)

http://www.chinascope.com/index/ai.html

免费开源python财经数据接口包

地址:http://tushare.org/index.html

特点:只有数据,非量化策略平台

量化投资者是如何获取实时行情数据的呢

基本都是自己封装CTP接口,程序端实现多账户、多策略的行情信号接收和委托提交/回报处理。也可以用 QuantBox/QuantBox_XAPI · GitHub 这样的封装的比较好、多接口统一API的项目直接整合到程序化平台的项目中使用。

通过程序接口用证券、期货账号登录后订阅品种的行情,证券、商品期货、股指期货、期权(全真模拟,9号就有实盘行情)都可以接收交易所的快照数据(例如商品、股指都是500ms一个快照,数据结构也比较完整)。然后交易平台可以把行情数据广播给各个策略程序,程序根据量化策略的逻辑判断是否下单?挂单的方式如何?挂单失败是否追单?如何追单?

策略程序判断要下单,则提交指令到程序化交易平台,平台把各个帐号各个品种中策略的逻辑持仓汇总为实际持仓,然后通过接口提交委托,并且处理委托回报。

行情数据一方面广播给策略程序,一方面自己存数据库,存下来的数据通过完整性检测后,可以自己合成低频率的数据,如 1分钟、30分钟、1小时、日度等等,这些数据会被用于策略回测,也可以用于市场微观结构的观察和研究,例如可以通过优化挂单方式来降低交易滑点。

Matlab可以做一些回测,实盘可能是比较不易用的。一般可以用C++, Java, C#来利用CTP程序化交易接口实现实盘平台,策略研究推荐用R做数据分析、统计、处理、可视化、策略分析、自动报告,用Rcpp(R调用C++)或者直接C++实现高性能回测,用单机并行或集群实现批量回测。

在中国,做量化交易一天的工作是怎样的

在中国,做量化交易一天的工作是怎样的?

【Edward.Fu的回答(265票)】:

谢邀。

作为一个管理规模超5亿的CTA基金经理,回答这个问题简直是义不容辞。

一般来说,所有quant trader的日常工作分2块,1是对现有策略的管理和维护,2是开发新策略。

而回答这个问题,又可以分为2个版本,一个是屌丝版,一个是高大上版。

+++++++++++++++++++++++++++++++华丽分割线+++++++++++++++++++++++++++++++

屌丝版

首先,是屌丝小A对于现有策略管理和维护:

1. 早上开盘前半小时,小A手忙脚乱开启各种交易软件,包括文华财经、大智慧、同花顺、快期、万德、TB、MC等,随后七手八脚手工调整各账号、各策略在各品种上的资金比例、标的合约、隔夜shibor利息等;

2. 开盘后,小A人工盯盘N个品种,开启8、16、32个行情窗口,确保程序正常交易,无明显bug,无乱发单现象,中途对行情提心吊胆,然后当扯淡的行情超越小A心理承受底线,撕毁小A自尊后小A果断停掉策略,修改参数,再迫不及待再把新策略丢进实盘,结果盘中突现行情,新策略没有发单,回溯时惊喜的发现老版策略早已满仓并盈利满满,小A心想,草,原来老版比新版更好;

3. 收盘后,小A开始用excel统计今日盈亏、发单、滑点等情况,然后做交易记录和净值图,惊喜的发现上周净值创新高之后的连续一周回撤后今天终于开始略有盈利,暗爽了一把,随后发给客户交易记录。期间最大的土豪客户B突然打电话过来,责问为何最近回撤太大,模型是否失效,是否需要减仓。小A淡定的各种解释波动率,ZF维稳,神华调价,乌克兰动乱。经过1个小时的不断解释后土豪B终于被说服,反过来安慰略显急躁的小A,表示如果下次再创新高后会考虑在加一倍的资金。小A长嘘一口气之后,看了下表,已经下午5点,遂开始自我打鸡血,为自己制定了新策略开发的进度和计划,但又考虑到目前策略盘中仍需跟踪观察,于是把计划中的deadline又延迟了1倍。在看表,已经6点,于是整理了下自己的老式联想手提,关机,心想下次提成后是不是该换个苹果,但又担心Mac各种软件的兼容性。回家的路上,在路边的永和吃完了晚餐,疲惫的面容下却依然掩饰不了小A内心的狂热与自豪;

第二天,在确保各交易数据和信息无误后,小A开始了新策略开发之旅:

1. 各种看K线,希望自己的火眼金睛能从纷杂混乱的走势中扑捉到些许信息,绞尽脑汁后突发灵感,于是埋头写代码2小时,写完后小A的内心开始无限憧憬牛逼新策略的绩效曲线,恨不得马上丢进去回溯绩效。结果发现新策略的盈利因子PF平均只有1.1,夏普0.8,年化收益风险比1.2。小A傻眼了,顿时赶脚不可能,开始怀疑数据不对,或者数据周期太短,内心实在无法接受这么牛逼的新策略怎么可能绩效如此鸡肋。在无比蛋疼的接受了这个狗血的事实后,小A出门在楼下的全家买了2个包子,决定下午再战;

2. 吃完午饭后,小A伸了个懒腰,扭了2下僵硬的脖子,再次投入到上午未完成的代码之旅。苦苦思索了4个小时后,依然毫无收获。小A表示压力山大,决定下楼透透气,走一走,放松下自己那纷杂无章的思绪。上海的4月,虽然有点小小的阳光,但依旧乍暖还寒。小A感受到些许的凉意后,拉上了下自己身上泛黄的adidas外套的拉链,然后漫无目的的走过1条街,到了一个十字路口。小A望着前面穿梭的各种车辆,终于等到了绿灯,而就在小A决定过马路那电光石火的瞬间,突然,小A有了一个崭新的想法:既然在全样本统计下,新策略没有明显效果的话,那我可不可以做一个类似红绿灯的机制,选出特定的模式作为绿灯,把不符合的行情作为红灯,做一个类似于模式识别的开关,来决定策略是否交易呢?想到这,小A开心的咯咯笑了出来,立马回头一路飞奔到办公室,在原有策略的基础上加了一个类似于KNN的模式识别。这次,小A不急着回溯了,因为他的内心,已经灰常淡定,他很自信这次的改进能让新策略脱胎换骨。果然,回溯报告验证了小A的想法。好几个品种测试下来,绩效都非常满意。而更让小A内心奔腾、无比狂热的是当他把新策略在20多个品种上来回测试后,吃惊的发现原来新策略的普适性如此之强,20多个品种上,几乎没有一个亏损,平均盈利因子PF有2.0,夏普2.5,年化收益风险比5.3。经过3年的摸索,终于,小A依靠最新开发的策略成功逆袭,接下来,便有了高大上的版本;

+++++++++++++++++++++++++++++++华丽分割线+++++++++++++++++++++++++++++++

一觉醒来,发现知乎上这篇拙文已被20多位大内高手连续点赞,深感惶恐。接下来讲的是小A逆袭变身高大上后的故事,各位请不要以为高大上必然就是权二代或富二代的大概率事件。在量化投资领域,只要你能静下心2-5年如一日的研究,每个人都可以逆袭。你的内心,必须要能做到即便在喧闹的菜市场依然能不被卖菜大妈七寸不烂之舌忽悠买发芽的土豆,即便在脱光的吉泽明步+波多野结衣+濑亚美莉3人面前一想到新的idea必须打开电脑,且鼻血狂飙且狂敲代码。

淡泊明志,宁静求远。一定要相信70分的智商+100分的努力+70分的背景+100分绝对深入和专注的细节研究可以完败100分的智商+100分的背景+80分努力+BS/GARCH/DL/SVM/HMM/machine learning(这个打ML会让人误会,不太好)样样精通的学霸。

这个领域,个人认为未来是比互联网金融的更火的热门,而最最最重要的是,这个行业,还没有3巨头。

如果您有幸从事这个领域,那恭喜你,如果你够努力,够钻研,大概率你还是会被历史滚滚的车轮压过你的尸体,不过回首往事,你依然可以给你的后辈讲述那一个个或宏伟或悲壮的大佬故事和一路走来自己伴随这个行业成长的心酸过程。要相信,这个行业目前在中国的现状,绝对是一群聪明绝顶的geeks抢占技术制高点的群雄逐鹿。而大部分从业人员,终将成为历史的尘埃,就像当年那一批批的互联网创业者炮灰。但是,如果你已尽自己全力一搏,那之后的成与败,于你来说,真的那么重要么?大丈夫生于乱世,当带三尺之剑,立不世之功。至于后话,永远是留给后人说的。

如果你年过30,有房贷车贷,而未从事这个行业,个人建议不要尝试轻易转行,要知道风险和收益本身便是一回事 。

如果你是个只图安稳,只听父母之言的襁褓之儿,请你不要选择这个行业。要知道若你的性格缺少血性,没有屡败屡战的勇气,你的淘汰率将会是100%,这个行业不适合弱者,也不相信关系,更不相信眼泪。有的只是优胜劣汰,胜者为王。

如果你是个初出茅庐的热血少年,对这一行有点兴趣,也愿意倾其功于一役,那请你颤抖吧,鸡东吧,怒吼吧。若你背景和经验都不错,我说的不错是至少国外重点大学本科以上或国内10大名校本科以上,请选择一个相对的高起点,去目前已略有名气的山寨,搬搬砖,打打下手,谦虚好学,跟个愿意教你的师傅,千万千万不要觉得自己牛逼。这一行,不图名气,默默赚钱的实力派到处都是。而假若你非上述此类,请你先没事自学点编程,高数和金融工程,少看点岛国片和跟朋友鬼扯,静下心安安静静为自己未来充电,不要妄自菲薄。这个行业,只相信绩效和实力,不关心你的出身。我自己的背景,非十大名校,也非211,更非985,属于典型的后者。

+++++++++++++++++++++++++++++++华丽分割线+++++++++++++++++++++++++++++++

感谢各位看官的经常光顾和点赞,有段时间没上知乎,突然发现拙文已经被点赞100+。想来周末闲来无事,于是在此为各位继续奉上高大上版。 楼下的@kuhasu前辈,不是我本人,他下面的回复确实已经蛮接近高大上的真相。不过不得不让我感叹的是世界真的好小,因为当时我也在伦敦的时候,还跟这位前辈@kuhasu有过一面之缘。不过,那时候,我还只是个刚入行的菜鸟而已,而@kuhasu 前辈早已经功成名就了。

+++++++++++++++++++++++++++++++华丽分割线+++++++++++++++++++++++++++++++

高大上版:

1. 早上8点10分,闹钟响第二下还没结束,小A迅速按停闹钟。蹑手蹑脚、小心翼翼地起床,生怕不小心吵醒了还在睡觉的老婆。随后开始洗漱,煮了点燕麦,从冰箱里拿出牛奶,倒好后放到冰箱外面,边吃还边为老婆水煮了一个土鸡蛋,这样老婆起床后就能吃到热腾腾的燕麦、鸡蛋和牛奶了。

小A看了下表,8点50分,这时手机响了一下,一个叫“交易小助手”的APP收到了一条提示:今天上海气温15-25度,有小雨,请带伞。**证券、**期货、IB、万德、Bloomberg五大数据源数据已正常订阅,策略组合矩阵已根据2014/6/13最新行情自动调整。看到这,小A心满意足的笑了笑。之所以选择三星,就是为了在安卓下更方便的为自己写一个交易监控的APP,确保每日的日常交易无误。这时候小A带上伞出门,走了大概15分钟,到达公司,随后便开始了一天的交易:

1. 早上9点开盘,小A新买的工作站+UPS已自动开启所有交易相关的软件。像往常一样,这个时候小A人工开始核对他的策略组合矩阵,确保所有策略所分配的头寸比例一切正常;

2. 开盘后,小A便投入到最近手头上的一些研究课题,如遗传算法在策略组合上的应用,做市商类高频策略的开发,隐马尔科夫在下单算法上的应用,以下省略1000字......现在的小A,已经没有之前的那种高强度的压力了。因为就算这些课题失败了,那也无所谓,毕竟像这类难题的攻克又不是一朝一夕的事情。再说,目前现有的策略体系前期都已经构建完成,至少在目前的1-2年,国内的环境还不至于让小A之前的老策略这么快淘汰掉。不过,出于未雨绸缪考虑,小A最近和公司的管理层一直有在协商,是否需要从google、百度、物理实验室等这些工业界再挖几个做算法的人过来。小A这个想法已经存在有一段时间了,虽然目前的老策略仍在继续盈利,但是已经可以很明显的感觉到传统策略的盈利能力一直在下降。若非最近半年新研发成功的一些策略,也许今年的年化收益风险比就不能像往年一样上3了吧;

3. 收盘后,系统已将今日所有的绩效统计数据自动生成,包括滑点、成交概率、委托到成交的平均回报时间等等。比较后发现**公司的速度相对略慢,于是给**公司老总打了个电话,要求其尽快对IT部门技术升级。打完电话后小A还在逼叨叨逼叨叨、自言自语地说尼玛连个行情端口都这么慢,明年我们自己买个小点的经纪公司得了,这样还能省下验证保证金这档子事。不过小A想了想还是还是算了,一是这个风险好像还是蛮头痛,毕竟去年光大事件还历历在目;二是这年头经纪商也赚不了几个钱,要不是交易所返个佣,估计十有八九的经纪商都得饿死;

2014年6月23日新出来热乎的工作岗位,请各位有合适的朋友多多推荐,有意的请在下面留自己的邮箱,合适的话我会私信大家:

CTA投资研究员(数据挖掘分析师)

岗位职责:

1.分析金融市场(期货、股票等)数据,寻找可利用的机会;

2.开发与维护量化交易策略;

3.提供机器学习/数据挖掘相应的技术支持;

岗位要求:

1.熟练计算机编程能力,熟练掌握至少一门编程语言,python优先;

2.理工科背景,具有良好的数理统计、数据挖掘等相关知识储备,熟悉机器学习方法(分析科学问题和相应数据,建立模型和方法,验证模型和方法,应用模型和方法并分析结果,改进模型和方法);

3.有处理分析大量数据的经验,并能熟练选择和应用数据挖掘和机器学习方法解决科研和工作中的实际问题;

4.良好的自我学习和快速 学习能力,有工作激情,喜欢金融行业;

5.两年及以上实验室研究经验或研发类工作经验优先;

6.硕士以上学历,各校本科相关专业特别优秀可考虑。

CTA高级研究员(投资经理)

岗位要求:

1. 理工科背景,良好的数理统计功底,硕士或博士学历。

2. 三年左右相关(CTA程序化交易统计套利数据分析量化策略开发)研发或投资工作经验

(请在简历中详细描述过往工作岗位、职责、工作成果)。

3. 良好的编程能力,熟悉python/linux者最佳。

4. 良好的学习能力和执行力。

岗位职责:

1、研究期货市场价格规律,寻找可量化的交易机会。

2、开发与优化量化策略模型,制定交易方案。

3、构建与维护投资组合,最大化绩效。

4、配合团队优化投研流程,提高投研效率。

薪酬待遇:

固定年薪25万起,外加优厚业绩提成和年终奖金。推荐的朋友有奖,请扩散。

【kuhasu的回答(40票)】:

谢邀。

作为一个管理规模超30亿美金对冲基金从业者,回答这个问题简直是义不容辞。

一般来说,所有quant trader的日常工作分2块,1是对现有策略的管理和维护,2是开发新策略。

而回答这个问题,又可以分为2个版本,一个是屌丝版,一个是高大上版。

+++++++++++++++++++++++++++++++华丽分割线+++++++++++++++++++++++++++++++

高大上版

首先,是高富帅小A对于现有策略管理和维护:

1、早上开盘前,电脑系统自动开启,然后进行自检,并进入交易状态,小A这时候在刷微博和微信朋友圈;

2、开盘后,电脑自动交易。小A在看书,游泳,跑步,游园,逛街,看书是前几年的状态,省下的是后几年的状态,小A闲着无聊的时候会去上班,搞一级市场,所以有时候在做并购谈判。如果出现了极其特殊的情况,比如海缆断、交易所停电、地震和火山爆发,前几年的时候小A的手机会第一时间收到消息切换到人工操作,而后来根本就不用切换到人工操作了,所以小A有时候也为自己插不上手而黯然神伤;

3、收盘后,电脑自动维护,对于非全天24小时交易的电脑,自己关机休息了,24小时交易的机器会根据情况定期自检。十几前年的时候,小A会时不时看看交易结果报告,没过几年就发现这是多么没有意义的事情了,于是想起来才会看一下报告。

自从上马了事件驱动系统之后,新闻事件、社区舆情、突发情况等等都被爬虫和自然语言分析取代了,大数据处理能力比人脑快还准。本来小A可以五马长枪地点评波动率,ZF维稳,神华调价,乌克兰动乱,但是最后的结果却常常是在电脑那边基于的参考权重相当的低,低得甚至可以忽略不计,这一次次地挫败了小A本来爆棚的自信心和自我陶醉感,开始意识到开放心是多么的重要,然后日常活动中加入了冥想(就是坐在那里像个屌丝一样什么也不想)。前年的时候,小A服务的公司又上马了一套新系统,可以直接分析CNN,BBC,路透,彭博,CCTV的新闻频道报道,小A坚信,随着物联网的发展,用不了多久,他们公司就可以分析出主播中午是不是吃的韭菜馅的包子了。

+++++++++++++++++++++++++++++++华丽分割线+++++++++++++++++++++++++++++++

淡泊明志,宁静求远。一定要相信这个领域出身根本不重要,学历学校、学习成绩、智商、年龄、工作经验、继承的财富,等等其他行业的制胜法宝都是浮云。

这个领域,个人认为未来是比互联网金融的更火的热门,而最最最重要的是,这个行业,巨头绝对没兴趣露头,因为巨头不需要融资,不融资就没有必要做广告。

如果您有幸从事这个领域,那恭喜你,如果你够努力,够钻研,大概率你还是会被历史滚滚的车轮压过你的尸体,不过回首往事,你依然可以给你的后辈讲述那一个个或宏伟或悲壮的大佬故事和一路走来自己伴随这个行业成长的心酸过程。要相信,这个行业目前在中国的现状,绝对是一群聪明绝顶的geeks抢占技术制高点的群雄逐鹿。而大部分从业人员,终将成为历史的尘埃,就像当年那一批批的互联网创业者炮灰。但是,如果你已尽自己全力一搏,那之后的成与败,于你来说,真的那么重要么?大丈夫生于乱世,当带三尺之剑,立不世之功。至于后话,永远是留给后人说的。(呃~这段实在是模仿不下去了,太文艺青年范儿了我说不出来,赞!)

如果你年过30,有房贷车贷,而未从事这个行业,那恭喜你,西蒙斯40岁才创建的大奖章基金,索罗斯33岁才投资入门43岁才创建的索罗斯基金。外界的信息都是错的,就算你早接触,哪怕是证券基金从业者,也不一定对路。而对于财务现金流稳健的你来说,即便不辞职,利用业余时间从事交易也可以实现财务自由,条件成熟了就可以辞职单独成立基金。这是二级市场作为公平市场的优势。

这个行业不适合弱者,也不相信关系,更不相信眼泪。有的只是优胜劣汰,胜者为王。国内目前的机构基本上都有严重的缺陷,风险爆发是迟早的事儿,而且会越来越多,这跟之前的经验、管理框架体系、选人用人都有关系,无论是券商自营、资管、还是私募机构,我们作为市场的直接参与者要感谢他们无私地为市场提供了流动性。

如果你是个初出茅庐的热血少年,对这一行有点兴趣,也愿意倾其功于一役,那请你颤抖吧,鸡东吧,怒吼吧。即便你背景和经验都不错,即便至少国外重点大学本科以上或国内10大名校本科以上,即便你先努力自学了编程,高数和金融工程,考取了CFA等证(CFA不是必需的),即便。。。先去锻炼吧!我们不招新手!^_^

+++++++++++++++++++++++++++++++华丽分割线+++++++++++++++++++++++++++++++

上面回复纯属好玩儿,无任何指向性,对其他回复者的热心回复,尤其被模仿的回复者衷心感谢!

如有虚假纯属巧合,切莫对号入座。:P

【JamesGe的回答(8票)】:

不邀自来,终于见到一个自己能答的了,不能放过!!!

鄙人现在管理2个亿的套利策略账户,至于什么套利,呵呵,圈子真心小。反正市场容量20亿上下这种吧。。。。

+++++++++++++++++++++++++++++++我素疯哥线+++++++++++++++++++++++++++++++

盘前:大概8:20到公司,做各种盘前准备,主要是启动一下交易软件啦,话说公司自己研发的系统启动起来真是麻烦,以后一定要找个运维做这种事情!!关注一下早间新闻(99%的概率是没什么用),刷个微博,泡咖啡,吃面,然后给其他交易员开个晨会,嗯,其实就是扯扯淡。

早上开盘时间:进入紧张而又无聊的开盘时间。做我这个事情,一天大概只有半个小时是在成交的,其他时间就是看着。看看行情是不是正常,程序有没有乱发单,手动调整一下参数,手感来了可以开张多单玩玩,不要超过风控上限哦亲~~ 这个时候主要有两件事情:1. 监控程序和持仓,2. 观察市场,为策略开发寻找灵盖。

午休: 出去跟大家吃个饭呗。。。什么?!你以为交易员会谈论很高大上的内容??!!我会告诉你我们只是服务员面前装13吗?不过,那个女孩的确有点像某岛女神。。。

下午开盘时间:基本跟上午一样,不同是的收盘前一个小时是仓位调整阶段,这个时候如果仓位不合适,就要紧张一下了。最纠结的就是收盘前30分钟出行情。。。尼玛,我刚调好仓位,要不要这样啊。。。

收盘后一个小时:算账(当之无愧最重要的事情),盘后处理工作(记录持仓,算一下波动率,统计滑点),想想明天的交易策略(大概率时间要做微调,大调的时候也时有发生),打电话给其他公司交易员扯扯蛋(赚钱的时候)。复盘总结会,也是扯淡。

之后的时间:交易员盘后的时间非常灵活的,当然,我也去过很变态的公司,每天待到7,8点,不过这绝13不是常态。做研究这种事情。。。有了灵感想不做都难受,但是没灵感的时候硬做,一般做出来都是废的。一般一周中研究和学习的时间一半一半吧。我很佩服每天能固定时间做研究的人,鄙人绝对是三天打渔两天晒网那种。 没办法。。。只能去女澡堂找找灵感咯~

+++++++++++++++++++++++++++++++我素疯哥线+++++++++++++++++++++++++++++++

最后说一句,见了很多量化交易员之后,我的感觉就是每个人都有自己的风格,有那种20年如一日做研究的,也有像我这样赚了钱就要去旅游三个月的,也有吃斋念佛的。上次交流会见了一个60岁的老爷爷,做TB的程序化,真心佩服。所以没有必要太在乎别人做什么,跟交易本身一样,只要自己舒服就行啦~

【杨影枫的回答(6票)】:

谢邀,但其实没啥好答的。。。

量化的主要特点就是自动化,一旦自动化就极大的减少了人为干预,所以每天流程性的工作只是打开程序,然后监视行情和报单观察有没出错。(程序自动下单、自动记录交易结果、自动完成、甚至自动回测演算出交易参数)

其他主要工作是在开发新的策略,或者对已有策略的回测以及实现。

基本不需要与客户接触,基本很少事务性的工作,甚至有些极致的连经济类新闻都不是很关心。。。

【吴敌的回答(5票)】:

谢谢Vas Brandon的邀请, 目前在run一个HFT, 每日基本流程如下:

8:00~9:00: 打开交易策略,设置一些运营参数

9:00~9:30: 观察策略运转,确保没有问题

9:30~15:30: 解决已有策略的问题并研究新策略,测试新想法

15:30~17:00: 分析交易记录, 确定第二天的交易计划

17:00~18:00: 运动

另外,贴一个比较欣赏的国外量化交易员Ernie Chan对这个问题的回答。

——知乎

知乎 个人交易账户怎么做量化交易

券商不给个人投资者提供接口,但是你可以采用曲线救国的方式来实现程序化交易。

大多数券商的官网上都有网上交易,也就是通过web页面交易,这就意味着你可以模拟登录,通过http请求发送委托单。

如果你没有分析接口的能力,那也不用担心,有现成的交易框架,去github上搜一下easytrader看看~我自己用了用感觉还不错!

当然啦,如果你所在的券商没有web交易服务,理论上来讲也是可以通过分析手机app/交易软件的接口,模拟登录实现程序化交易的,不过这个可能就稍微麻烦一些了

  • 评论列表:
  •  黑客技术
     发布于 2022-05-29 05:40:51  回复该评论
  • 灵活的,当然,我也去过很变态的公司,每天待到7,8点,不过这绝13不是常态。做研究这种事情。。。有了灵感想不做都难受,但是没灵感的时候硬做,一般做出来都是废的。
  •  黑客技术
     发布于 2022-05-29 14:17:38  回复该评论
  • 20多个品种上,几乎没有一个亏损,平均盈利因子PF有2.0,夏普2.5,年化收益风险比5.3。经过3年的摸索,终于,小A依靠最新开发的策略成功逆袭,接下来,便有了高大上的版本;++

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.